资源类型

期刊论文 634

会议视频 8

年份

2023 71

2022 75

2021 63

2020 50

2019 42

2018 40

2017 40

2016 30

2015 37

2014 27

2013 26

2012 19

2011 15

2010 16

2009 18

2008 16

2007 25

2006 3

2005 4

2004 3

展开 ︾

关键词

催化剂 4

2021全球十大工程成就 2

二氧化碳 2

吸附 2

固体氧化物燃料电池 2

增材制造 2

带传动 2

显微硬度 2

有色金属工业 2

绿色化工 2

重金属 2

重金属废水 2

&alpha 1

1T/2H-MoS2 1

2035 1

CO2 加氢 1

Deep metal mining 1

EDI 1

FE-SEA混合法 1

展开 ︾

检索范围:

排序: 展示方式:

Diffusion process in enzymemetal hybrid catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 921-929 doi: 10.1007/s11705-022-2144-4

摘要: Enzyme–metal hybrid catalysts bridge the gap between enzymatic and heterogeneous catalysis, which is significant for expanding biocatalysis to a broader scope. Previous studies have demonstrated that the enzyme–metal hybrid catalysts exhibited considerably higher catalytic efficiency in cascade reactions, compared with that of the combination of separated enzyme and metal catalysts. However, the precise mechanism of this phenomenon remains unclear. Here, we investigated the diffusion process in enzyme–metal hybrid catalysts using Pd/lipase-Pluronic conjugates and the combination of immobilized lipase (Novozyme 435) and Pd/C as models. With reference to experimental data in previous studies, the Weisz–Prater parameter and efficiency factor of internal diffusion were calculated to evaluate the internal diffusion limitations in these catalysts. Thereafter, a kinetic model was developed and fitted to describe the proximity effect in hybrid catalysts. Results indicated that the enhanced catalytic efficiency of hybrid catalysts may arise from the decreased internal diffusion limitation, size effect of Pd clusters and proximity of the enzyme and metal active sites, which provides a theoretical foundation for the rational design of enzyme–metal hybrid catalysts.

关键词: enzyme–metal hybrid catalyst     internal diffusion     proximity effect     kinetic model    

Self-assembly of metal-cholesterol oxidase hybrid nanostructures and application in bioconversion of

Yu Xin, Qiuyue Gao, Yu Gu, Mengyao Hao, Guangming Fan, Liang Zhang

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 615-629 doi: 10.1007/s11705-020-1989-7

摘要: A cholesterol oxidase (COD) was hybridized with Ca , Zn , Al , Fe and Mn . After precipitation with PO at 4 °C for 72 h, the resulting pellets were freeze-dried. In scanning electron microscopy assays, the metal-COD complexes revealed flower-like or granular structures after hybridization. Fourier transform infrared spectroscopy assay revealed the characteristic peaks of both the enzyme and metal materials. X-ray diffraction analysis indicated that COD was encapsulated in CaHPO ·2H O-, Zn (PO ) ·4H O-, AlPO -, FeP - and Mn (PO ) ·3H O-based nanostructures, respectively. Differential scanning calorimetry assay indicated significant increases in thermo-denaturation temperatures from 60.5 °C to 167.02 °C, 167.02 °C, 137.70 °C, 172.85 °C and 160.99 °C, respectively. Using steroid derivatives as substrates, this enzyme could convert cholesterol, pregnenolone, dehydroepiandrosterone, ergosterol, -sitosterol and stigmasterol to related single products. Hybridization in metal-based nanostructures could significantly enhance the initial conversion ratio and reaction stability of the enzyme. In addition, substrate selectivity could be affected by various metal materials. Briefly, using Ca , Zn , Al , Fe and Mn as hybrid raw materials could help to encapsulate COD in related metal-enzyme nanostructures, and could help to promote the stability and tolerant properties of the enzyme, while also enhancing its catalytic characteristics.

关键词: cholesterol oxidase     metal-enzyme hybridization     nanostructures     sterol derivatives     bioconversion    

Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial

Yang GAO, Chiyuan MIAO, Jun XIA, Liang MAO, Yafeng WANG, Pei ZHOU

《环境科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 213-223 doi: 10.1007/s11783-011-0345-z

摘要: It is unclear whether certain plant species and plant diversity could reduce the impacts of multiple heavy metal pollution on soil microbial structure and soil enzyme activities. Random amplified polymorphic DNA (RAPD) was used to analyze the genetic diversity and microbial similarity in planted and unplanted soil under combined cadmium (Cd) and lead (Pb) pollution. A metal hyperaccumulator, , and a common plant, , were used in this research. The results showed that microorganism quantity in planted soil significantly increased, compared with that in unplanted soil with Cd and Pb pollution. The order of microbial community sensitivity in response to Cd and Pb stress was as follows: actinomycetes>bacteria>fungi. Respiration, phosphatase, urease and dehydrogenase activity were significantly inhibited due to Cd and Pb stress. Compared with unplanted soil, planted soils have frequently been reported to have higher rates of microbial activity due to the presence of additional surfaces for microbial colonization and organic compounds released by the plant roots. Two coexisting plants could increase microbe population and the activity of phosphatases, dehydrogenases and, in particular, ureases. Soil enzyme activity was higher in phytoremediated soil than in planted soil in this study. Heavy metal pollution decreased the richness of the soil microbial community, but plant diversity increased DNA sequence diversity and maintained DNA sequence diversity at high levels. The genetic polymorphism under heavy metal stress was higher in phytoremediated soil than in planted soil.

关键词: enzyme activity     soil DNA     microbial population     plant diversity     heavy metal    

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 123-133 doi: 10.1007/s11708-022-0849-1

摘要: High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells (PEMFCs), in which Pt-based catalysts employed in the cathodic catalyst layer (CCL) account for the major portion of the cost. Although non-precious metal catalysts (NPMCs) show appreciable activity and stability in the oxygen reduction reaction (ORR), the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL. Therefore, most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport. In this work, the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures, one containing low-Pt-based CCL and NPMC-based dummy catalyst layer (DCL) and the other containing only the NPMC-based CCL. Using Zn-N-C based DCLs of different thickness, the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis. Then, the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy, respectively. Results show that the ratios of local and bulk oxygen transport resistances in NPMC-based CCL are 80% and 20%, respectively, and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs. Furthermore, the activity of active sites per unit in NPMC-based CCLs was determined to be lower than that in the Pt-based CCL, thus explaining worse cell performance of NPMC-based membrane electrode assemblys (MEAs). It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.

关键词: proton exchange membrane fuel cells (PEMFCs)     non-precious metal catalyst (NPMC)     cathode catalyst layer (CCL)     local and bulk oxygen transport resistance    

Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic

Man ZHANG,Feng HE,Dongye ZHAO

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 888-896 doi: 10.1007/s11783-015-0774-1

摘要: In this study, stabilized Pd, Pt and Au nanoparticles were successfully prepared in aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping agent. These metal nanoparticles were then tested for catalytic hydrodechlorination toward two classes of organochlorinated compounds (vinyl polychlorides including trichloroethylene (TCE), tetrachloroethylene (PCE), and alkyl polychlorides including 1,1,1-trichloroethane (1,1,1-TCA), and 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA)) to determine the rate-limiting steps and to explore the reaction mechanisms. The surface area normalized reaction rate constant, , showed a systematic dependence on the electronic structure (the density of states at the Fermi level) of the metals, suggesting that adsorption of organochlorinated reactants on the metal catalyst surfaces is the rate-limiting step for catalytic hydrodechlorination. Hydrodechlorination rates of 1,1,1-TCA and 1,1,1,2-TeCA agreed with the bond strength of the first (weakest) dissociated C-Cl bond, suggesting that C-Cl bond cleavage, which is the first step for dissociative adsorption of the alkyl polychlorides, controlled the catalytic hydrodechlorination rate. However, hydrodechlorination rates of TCE and PCE correlated with the adsorption energies of their molecular (non-dissociative) adsorption on the noble metals rather than with the first C-Cl bond strength, suggesting that molecular adsorption governs the reaction rate for hydrodechlorination of the vinyl polychlorides.

关键词: catalytic hydrodechlorination     electronic structure     metal nanoparticles     reaction mechanisms    

Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration

Cheng PAN, Chao FAN, Wanqin WANG, Teng LONG, Benhua HUANG, Donghua ZHANG, Peigen SU, Aqun ZHENG, Yang SUN

《能源前沿(英文)》 2022年 第16卷 第5期   页码 822-839 doi: 10.1007/s11708-020-0677-0

摘要: Most known catalytic dehydration of sugar alcohols such as D-sorbitol and D-mannitol can only produce di-dehydrated forms as major product, but mono-dehydrated products are also useful chemicals. Moreover, both di- and mono-dehydration demand a high temperature (150°C or higher), which deserves further attentions. To improve the mono-dehydration efficiency, a series of metal-containing hydrothermal carbonaceous materials (HTC) are prepared as catalyst in this work. Characterization reveals that the composition of preparative solution has a key influence on the morphology of HTC. In transformation of D-sorbitol, all HTC catalysts show low conversions in water regardless of temperature, but much better outputs are obtained in ethanol, especially at a higher temperature. When D-mannitol is selected as substrate, moderate to high conversions are obtained in both water and ethanol. On the other hand, high mono-dehydration selectivity is obtained for both sugar alcohols by using all catalysts. The origin of mono-dehydration selectivity and role of carbon component in catalysis are discussed in association with calculations. This study provides an efficient, mild, eco-friendly, and cost-effective system for mono-dehydration of sugar alcohols, which means a lot to development in new detergents or other fine chemicals.

关键词: hydrothermal carbon     morphology     catalyst     mono-dehydration     sugar alcohol    

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support and metalnanoparticle size on catalyst activity and products selectivity

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 299-309 doi: 10.1007/s11705-020-1925-x

摘要: In this paper, a series of cobalt catalysts supported on reduced graphene oxide (rGO) nanosheets with the loading of 5, 15 and 30 wt-% were provided by the impregnation method. The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis (FTS). The prepared catalysts were carefully characterized by nitrogen adsorption-desorption, hydrogen chemisorption, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, temperature programmed reduction, transmission electron microscopy, and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets. The results showed that with increasing the cobalt loading on the rGO support, the carbon defects are increased and as a consequence, the reduction of cobalt is decreased. The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size. The products selectivity results indicated that the methane selectivity decreases, whereas the C selectivity raises with the increasing of the cobalt particle size, which can be explained by chain propagation in the primary chain growth reactions.

关键词: cobalt catalyst     cobalt particle size     Fischer-Tropsch synthesis     reduced graphene oxide     supported catalyst    

Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst

Seiichi Taguchi

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 139-142 doi: 10.1007/s11705-017-1636-0

摘要: Establishment of the regeneratable whole-cell catalyst platform for the?production of biobased polymeric materials is a?typical topic of synthetic biology. In this commentary, discovery story of a “lactate-polymerizing enzyme” (LPE)?and LPE-based?achievements for creating a new variety of polyesters with incorporated unnatural monomers are presented. Besides the importance of microbial platform itself is discussed referring to the “ballooning”- .

关键词: synthetic biology     enzyme evolutionary engineering     polyhydroxyalkanoate    

Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for

Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 929-938 doi: 10.1007/s11783-015-0795-9

摘要: Metal oxide nanoparticles like hydrated ferric oxide (HFO) or hydrated zirconium oxide (HZrO) are excellent sorbents for environmentally significant ligands like phosphate, arsenic, or fluoride, present at trace concentrations. Since the sorption capacity is surface dependent for HFO and HZrO, nanoscale sizes offer significant enhancement in performance. However, due to their miniscule sizes, low attrition resistance, and poor durability they are unable to be used in typical plug-flow column setups. Meanwhile ion exchange resins, which have no specific affinity toward anionic ligands, are durable and chemically stable. By impregnating metal oxide nanoparticles inside a polymer support, with or without functional groups, a hybrid nanosorbent material (HNM) can be prepared. A HNM is durable, mechanically strong, and chemically stable. The functional groups of the polymeric support will affect the overall removal efficiency of the ligands exerted by the Donnan Membrane Effect. For example, the removal of arsenic by HFO or the removal of fluoride by HZrO is enhanced by using anion exchange resins. The HNM can be precisely tuned to remove one type of contaminant over another type. Also, the physical morphology of the support material, spherical bead versus ion exchange fiber, has a significant effect on kinetics of sorption and desorption. HNMs also possess dual sorption sites and are capable of removing multiple contaminants, namely, arsenate and perchlorate, concurrently.

关键词: ion exchange     sorption     arsenic     perchlorate     fluoride    

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 838-854 doi: 10.1007/s11705-018-1746-3

摘要: Water splitting is a highly promising approach for the generation of sustainable, clean hydrogen energy. Tremendous efforts have been devoted to exploring highly efficient and abundant metal oxide electrocatalysts for oxygen evolution and hydrogen evolution reactions to lower the energy consumption in water splitting. In this review, we summarize the recent advances on the development of metal oxide electrocatalysts with special emphasis on the structural engineering of nanostructures from particle size, composition, crystalline facet, hybrid structure as well as the conductive supports. The special strategies relay on the transformation from the metal organic framework and ion exchange reactions for the preparation of novel metal oxide nanostructures with boosting the catalytic activities are also discussed. The fascinating methods would pave the way for rational design of advanced electrocatalysts for efficient water splitting.

关键词: water splitting     structure engineering     metal organic framework     ion exchange     synergistic effect     hybrid structure     conductive supports    

Joint effects of Penta-BDE and heavy metals on

Baohua TANG, Lingyan ZHU, Qixing ZHOU

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 99-110 doi: 10.1007/s11783-010-0260-8

摘要: The joint toxicity of Penta-BDE (Pe-BDE) and heavy metals including cadmium and copper on ( ) was evaluated on the basis of determining the 48 h survival, antioxidative enzyme responses, and lipid peroxidation. The response was classified as additive, greater than additive, or less than additive by comparing the measured “toxic units, TU” with one. Based on the survival of , less-than-additive interactions were found in most of mixtures treatments. This may be attributed to the different toxicity mechanism between Pe-BDE and metals. Cu and Cd played a greater role in toxicity than what Pe-BDE did. As for the superoxide dismutase (SOD) and catalase (CAT) activity, most response was less than additive. For the glutathione -transferases (GST) activity, most of the greater-than-additive responses were found in the Cu plus Pe-BDE treatments, but the additive responses occurred in Cd plus Pe-BDE treatments and binary metal treatments. For lipid peroxide levels, which were measured as malondialdehyde (MDA) levels, less-than-additive response occurred in the 50% Cd plus 50% Cu and ternary mixture treatments. Results suggested that Pe-BDE, Cd, and Cu could induce different patterns of antioxidant enzyme responses, such as antioxidant/prooxidant responses, depending on their capability to produce reactive oxygen species and antioxidant enzymes to detoxify them.

关键词: polybrominated diphenyl ethers (PBDEs)     heavy metal     mixture toxicity     toxic units (TUs)     antioxidant enzyme     lipid peroxidation    

Unconventional hydrodynamics of hybrid fluid made of liquid metals and aqueous solution under applied

Xu-Dong ZHANG, Yue SUN, Sen CHEN, Jing LIU

《能源前沿(英文)》 2018年 第12卷 第2期   页码 276-296 doi: 10.1007/s11708-018-0545-3

摘要: The hydrodynamic characteristics of hybrid fluid made of liquid metal/aqueous solution are elementary in the design and operation of conductive flow in a variety of newly emerging areas such as chip cooling, soft robot, and biomedical practices. In terms of physical and chemical properties, such as density, thermal conductivity and electrical conductivity, their huge differences between the two fluidic phases remain a big challenge for analyzing the hybrid flow behaviors. Besides, the liquid metal immersed in the solution can move and deform when administrated with non-contact electromagnetic force, or even induced by redox reaction, which is entirely different from the cases of conventional contact force. Owing to its remarkable capability in flow and deformation, liquid metal immersed in the solution is apt to deform on an extremely large scale, resulting in marked changes on its boundary and interface. However, the working mecha- nisms of the movement and deformation of liquid metal lack appropriate models to describe such scientific issues via a set of well-established unified equations. To promote investigations in this important area, the present paper is dedicated to summarizing this unconventional hydrodynamics from experiment, theory, and simulation. Typical experimental phenomena and basic working mechanisms are illustrated, followed by the movement and deformation theories to explain these phenomena. Several representative simulation methods are then proposed to tackle the governing functions of the electrohydrodynamics. Finally, prospects and challenges are raised, offering an insight into the new physics of the hybrid fluid under applied fields.

关键词: liquid metal     hybrid fluid     hydrodynamics     surface tension     applied fields     self-actuation    

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-018-1017-z

摘要: In this study, post plasma-catalysis degradation of mixed volatile organic compounds (benzene, toluene, and xylene) has been performed in a hybrid surface/packed-bed discharge plasma reactor with Ag-Ce/ g-Al O catalyst at room temperature. The effect of relative air humidity on mixed VOCs degradation has also been investigated in both plasma-only and PPC systems. In comparison to the plasma-only system, a significant improvement can be observed in the degradation performance of mixed VOCs in PPC system with Ag-Ce/ g-Al O catalyst. In PPC system, 68% benzene, 89% toluene, and 94% xylene were degraded at 800 J·L , respectively, which were 25%, 11%, and 9% higher than those in plasma-only system. This result can be attributed to the high catalytic activity of Ag-Ce/ g-Al O catalyst to effectively decompose O and lead to generating more reactive species which are capable of destructing the VOCs molecules completely. Moreover, the presence of Ag-Ce/ g-Al O catalyst in plasma significantly decreased the emission of discharge byproducts (NO and O ) and promoted the mineralization of mixed VOCs towards CO . Adding a small amount of water vapor into PPC system enhanced the degradation efficiencies of mixed VOCs, however, further increasing water vapor had a negative impact on the degradation efficiencies, which was primarily attributed to the quenching of energetic electrons by water vapor in plasma and the competitive adsorption of water vapor on the catalyst surface. Meanwhile, the catalysts before and after discharge were characterized by the Brunauer-Emment-Teller and X-ray photoelectron spectroscopy.

关键词: Mixed VOCs     HSPBD plasma reactor     Degradation     Catalyst     Relative humidity    

Construction of a CaHPO4-PGUS1 hybrid nanoflower through protein-inorganic self-assembly, and its application

Tian Jiang, Yuhui Hou, Tengjiang Zhang, Xudong Feng, Chun Li

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 554-562 doi: 10.1007/s11705-019-1834-z

摘要: Glycyrrhetinic acid 3- -mono- -D-glucuronide (GAMG), an important pharmaceutical intermediate and functional sweetener, has broad applications in the food and medical industries. A green and cost-effective method for its preparation is highly desired. Using site-directed mutagenesis, we previously obtained a variant of -glucuronidase from Li-3 (PGUS1), which can specifically transform glycyrrhizin (GL) into GAMG. In this study, a facile method was established to prepare a CaHPO -PGUS1 hybrid nanoflower for enzyme immobilization, based on protein-inorganic hybrid self-assembly. Under optimal conditions, 1.2 mg of a CaHPO -PGUS1 hybrid nanoflower precipitate with 71.2% immobilization efficiency, 35.60 mg∙g loading capacity, and 118% relative activity was obtained. Confocal laser scanning microscope and scanning electron microscope results showed that the enzyme was encapsulated in the CaHPO -PGUS1 hybrid nanoflower. Moreover, the thermostability of the CaHPO -PGUS1 hybrid nanoflower at 55°C was improved, and its half-life increased by 1.3 folds. Additionally, the CaHPO -PGUS1 hybrid nanoflower was used for the preparation of GAMG through GL hydrolysis, with the conversion rate of 92% in 8 h, and after eight consecutive runs, it had 60% of its original activity.

关键词: β-glucuronidase     enzyme-inorganic hybrid nanoflower     biotransformation     glycyrrhizin     glycyrrtinic acid 3-O-mono-β-D-glucuronide    

Influence of glucose feeding on the ligninolytic enzyme production of the white-rot fungus Phanerochaete

ZHOU Xiaoyan, WEN Xianghua, FENG Yan

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 89-94 doi: 10.1007/s11783-007-0017-1

摘要: The present work studied the influence of glucose feeding on the ligninolytic enzyme production of in a nitrogen-limited (C/N ratio is 56/8.8 mmol/L) medium. Several sets of shaking flask experiments were conducted. The results showed that 2 g/L glucose feeding on the first day of the culture (24 h after the inoculation) stimulated both fungal biomass growth and enzyme production. The manganese peroxidase (MnP) activity was 2.5 times greater than that produced in cultures without glucose feeding. Furthermore, the glucose feeding mode in fed-batch culture was also investigated. Compared to cultures with glucose feeding every 48 h, cultures with glucose feeding of 1.5 g/L (final concentration) every 24 h produced more enzymes. The peak and total yield of MnP activity were 2.7 and 3 times greater compared to the contrast culture, respectively, and the enzyme was kept stable for 4 days with an activity of over 200 U/L.

关键词: enzyme production     fed-batch culture     nitrogen-limited     inoculation     mmol/L    

标题 作者 时间 类型 操作

Diffusion process in enzymemetal hybrid catalysts

期刊论文

Self-assembly of metal-cholesterol oxidase hybrid nanostructures and application in bioconversion of

Yu Xin, Qiuyue Gao, Yu Gu, Mengyao Hao, Guangming Fan, Liang Zhang

期刊论文

Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial

Yang GAO, Chiyuan MIAO, Jun XIA, Liang MAO, Yafeng WANG, Pei ZHOU

期刊论文

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

期刊论文

Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic

Man ZHANG,Feng HE,Dongye ZHAO

期刊论文

Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration

Cheng PAN, Chao FAN, Wanqin WANG, Teng LONG, Benhua HUANG, Donghua ZHANG, Peigen SU, Aqun ZHENG, Yang SUN

期刊论文

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support and metalnanoparticle size on catalyst activity and products selectivity

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

期刊论文

Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst

Seiichi Taguchi

期刊论文

Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for

Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA

期刊论文

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

期刊论文

Joint effects of Penta-BDE and heavy metals on

Baohua TANG, Lingyan ZHU, Qixing ZHOU

期刊论文

Unconventional hydrodynamics of hybrid fluid made of liquid metals and aqueous solution under applied

Xu-Dong ZHANG, Yue SUN, Sen CHEN, Jing LIU

期刊论文

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

期刊论文

Construction of a CaHPO4-PGUS1 hybrid nanoflower through protein-inorganic self-assembly, and its application

Tian Jiang, Yuhui Hou, Tengjiang Zhang, Xudong Feng, Chun Li

期刊论文

Influence of glucose feeding on the ligninolytic enzyme production of the white-rot fungus Phanerochaete

ZHOU Xiaoyan, WEN Xianghua, FENG Yan

期刊论文